Sains Malaysiana 53(12)(2024): 3365-3376

http://doi.org/10.17576/jsm-2024-5312-19

 

A Double-Edged Sword Effect of Angiogenesis in Hypertension: A Review

(Kesan Pedang Bermata Dua Angiogenesis dalam Hipertensi: Suatu Tinjauan)

 

Noor Hasila, A.D.1, Nur Syahidah, N.H.1, Adila, A.H.2, Farinawati Yazid3 & Nur Najmi, M.A.1,*

 

1Programme of Biomedical Science, Centre of Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2Physiology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC),
56000 Cheras, Kuala Lumpur, Malaysia
3Discipline of Pediatric Dentistry, Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia,
Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

 

Diserahkan: 30 Mei 2024/Diterima: 29 Oktober 2024

 

Abstract

Hypertension, commonly known as high blood pressure, is a serious medical condition that significantly raises the risk of heart, brain, kidney, and blood vessel diseases. It remains one of the leading causes of morbidity and mortality worldwide, with its mechanisms still not fully understood. One emerging area of interest is the role of angiogenesis, the formation of new blood vessels, which is regulated by a delicate balance between pro- and anti-angiogenic modulators, including angiogenic factors, extracellular matrix proteins, adhesion receptors, and proteolytic enzymes. Disruption of this balance can lead to abnormal angiogenesis, potentially contributing to hypertension, as angiogenic growth factors are critical in maintaining vascular structure. If left untreated, high blood pressure damages capillaries and microvessels, accelerating the process of vascular rarefaction. Notably, microvascular rarefaction may occur independently of changes in blood pressure, indicating its potential role as a primary factor in hypertension progression. The ‘double-edged sword effect’ describes the paradoxical impact of both pro- and anti-angiogenic therapies, where either type of drug can induce hypertension, highlighting the dual nature of angiogenic regulation in vascular health. Given the rising use of angiogenesis-modulating therapies in treating various diseases, therapy-induced hypertension is expected to become more prevalent. This review was conducted to address the growing need to understand this dual effect of angiogenic therapies, the mechanisms underlying hypertension development, and the critical importance of early detection and long-term management of hypertension in patients undergoing such treatments.

 

Keywords: Angiogenesis; anti-angiogenic; hypertension; microvascular rarefaction; pro-angiogenic

 

Abstrak

Hipertensi, yang dikenali sebagai tekanan darah tinggi, adalah keadaan perubatan serius yang secara signifikan meningkatkan risiko penyakit jantung, otak, buah pinggang dan saluran darah. Ia kekal sebagai salah satu punca utama morbiditi dan mortaliti di seluruh dunia dengan mekanismenya yang masih belum difahami sepenuhnya. Salah satu bidang yang semakin mendapat perhatian ialah peranan angiogenesis, iaitu pembentukan saluran darah baharu yang dikawal oleh keseimbangan halus antara modulator pro-angiogenik dan anti-angiogenik, termasuk faktor angiogenik, protein matriks ekstrasel, reseptor adhesi dan enzim proteolitik. Gangguan pada keseimbangan ini boleh menyebabkan angiogenesis yang tidak normal, berpotensi menyumbang kepada hipertensi, kerana faktor pertumbuhan angiogenik adalah penting dalam mengekalkan struktur vaskular. Jika tidak dirawat, tekanan darah tinggi boleh merosakkan kapilari dan mikrovesel, mempercepatkan proses kekurangan vaskular. Kekurangan mikrovesel ini juga mungkin berlaku secara bebas daripada perubahan tekanan darah, menunjukkan peranannya sebagai faktor utama dalam perkembangan hipertensi. Kesan ‘pedang bermata dua’ menggambarkan impak paradoks kedua-dua terapi pro- dan anti-angiogenik dengan kedua-dua jenis ubat boleh menyebabkan hipertensi, menonjolkan sifat dwi pengawalan angiogenik dalam kesihatan vaskular. Memandangkan penggunaan terapi yang memodulasi angiogenesis semakin meningkat untuk merawat pelbagai penyakit, hipertensi yang disebabkan oleh terapi dijangka menjadi lebih kerap. Kajian semula ini dijalankan untuk menangani keperluan yang semakin meningkat dalam memahami kesan dwi terapi angiogenik, mekanisme yang mendasari perkembangan hipertensi, serta kepentingan kritikal pengesanan awal dan pengurusan jangka panjang hipertensi pada pesakit yang menjalani rawatan sedemikian.

 

Kata kunci: Angiogenesis; anti-angiogenik; hipertensi; kekurangan mikrovaskular; pro-angiogenik

 

RUJUKAN

Adair, T.H. & Montani, J.P. 2022. Angiogenesis. San Rafael: Morgan & Claypool Life Sciences. https://www.ncbi.nlm.nih.gov/books/NBK53238/

Bazzazi, H., Isenberg, J.S. & Popel, A.S. 2017. Inhibition of VEGFR2 activation and its downstream signaling to ERK1/2 and calcium by thrombospondin-1 (TSP1): In silicoinvestigation. Frontiers in Physiology 8: 48. https://www.frontiersin.org/articles/10.3389/fphys.2017.00048/full

Boegehold, M.A. 2007. Vascular remodelling and rarefaction in hypertension. Comprehensive Hypertension 59(Part 2): 367-374. https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/capillary-rarefaction

Broekman, F. 2011. Tyrosine kinase inhibitors: Multi-targeted or single-targeted? World Journal of Clinical Oncology 2(2): 80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3095472

Brozovich, F.V., Nicholson, C.J., Degen, C.V., Gao, Y.Z., Aggarwal, M. & Morgan, K.G.  2016. Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacological Reviews 68(2): 476-532. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819215/

Cao, R., Bråkenhielm, E., Pawliuk, R., Wariaro, D., Post, M.J., Wahlberg, E., Leboulch, P. & Cao, Y. 2003. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nature Medicine 9(5): 604-613. https://pubmed.ncbi.nlm.nih.gov/12669032

Carmeliet, P. & Jain, R.K. 2011. Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347): 298-307. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049445

Cébe-Suarez, S., Zehnder-Fjällman, A. & Ballmer-Hofer, K. 2006. The role of VEGF receptors in angiogenesis; complex partnerships. Cellular and Molecular Life Sciences 63(5): 601-615. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773843

Cheng, C., Diamond, J.J. & Falkner, B. 2008. Functional capillary rarefaction in mild blood pressure elevation. Clinical and Translational Science 1(1): 75-79. https://pubmed.ncbi.nlm.nih.gov/19412330

Chi, A.S. & Wen, P.Y. 2012. Inhibiting angiogenesis in malignant gliomas. In Handbook of Clinical Neurology, edited by Aminoff, M.J., Boller, F. & Swaab, D.F. Elsevier. 104: 279-308. https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecularbiology/platelet-derived-growth-factor

Cho, C.H., Kammerer, R.A., Lee, H.J., Steinmetz, M.O., Ryu, Y.S., Lee, S.H., Yasunaga, K., Kim, K.T., Kim, I., Choi, H.H., Kim, W., Kim, S.H., Park, S.K., Lee, G.M. & Koh, G.Y. 2004. COMP-Ang1: A designed angiopoietin-1 variant with nonleaky angiogenic activity. Proceedings of the National Academy of Sciences 101(15): 5547-5552. https://pubmed.ncbi.nlm.nih.gov/15060279‌

Cooke, J.P. & Losordo, D.W. 2015. Modulating the vascular response to limb ischemia. Circulation  Research 116(9): 1561-1578. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869986

De Falco, S. 2012. The discovery of placenta growth factor and its biological activity. Experimental and Molecular Medicine 44(1): 1-9. https://www.nature.com/articles/emm20121

de Jesus-Gonzalez, N., Robinson, E., Moslehi, J. & Humphreys, B.D. 2012. Management of antiangiogenic therapy-induced hypertension. Hypertension 60(3): 607-615. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421063

Deveza, L., Choi, J. & Yang, F. 2012. Therapeutic angiogenesis for treating cardiovascular diseases. Theranostics 2(8): 801-814. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425124  

Ding, Y., Song, N. & Luo, Y. 2012. Role of bone marrow-derived cells in angiogenesis: Focus on macrophages and pericytes. Cancer Microenvironment 5(3): 225-236. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460052

D’Souza, R., Raghuraman, R.P., Nathan, P., Manyonda, I.T. & Antonios, T.F.T. 2011. Low birth weight infants do not have capillary rarefaction at birth. Hypertension 58(5): 847-851. https://www.ahajournals.org/doi/pdf/10.1161/hypertensionaha.111.179226

E, G., Cao, Y., Bhattacharya, S., Dutta, S., Wang, E. & Mukhopadhyay, D. 2012. Endogenous vascular endothelial growth factor-A (VEGF-A) maintains endothelial cell homeostasis by regulating VEGF receptor-2 transcription. Journal of Biological Chemistry 287(5): 3029-3041. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270960

Ehrbar, M., Djonov, V.G., Schnell, C., Tschanz, S.A., Martiny-Baron, G., Schenk, U., Wood, J., Burri, P.H., Hubbell, J.A. & Zisch, A.H. 2004. Cell-demanded liberation of  VEGF 121 from fibrin implants induces local and controlled blood vessel growth. Circulation Research 94(8): 1124-1132. https://www.ahajournals.org/doi/full/10.1161/01.RES.0000126411.29641.08‌

Gohlke, P., Kuwer, I., Schnell, A., Amann, K., Mall, G. & Unger, T. 1997. Blockade of Bradykinin B 2 receptors prevents the increase in capillary density induced by chronic angiotensin-converting enzyme inhibitor treatment in stroke-prone spontaneously hypertensive rats. Hypertension 29(1): 478-482. https://www.ahajournals.org/doi/10.1161/01.HYP.29.1.478

Hecht, M. 2019. Types and Stages of Hypertension. https://www.healthline.com/health/types-and-stages-of-hypertension#other-types

Hinton, T.C., Adams, Z.H., Baker, R.P., Hope, K.A., Paton, J.F.R., Hart E.C. & Nightingale, A.K. 2020. Investigation and treatment of high blood pressure in young people: Too much medicine or appropriate risk reduction? Hypertension 75(1): 16-22. https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.119.13820

Humar, R., Zimmerli, L. & Battegay, E. 2009. Angiogenesis and hypertension: An update. Journal of Human Hypertension 23(12): 773-782. https://www.nature.com/articles/jhh200963‌

Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., Ferrara, N., Fyfe, G., Rogers, B., Ross, R. & Kabbinavar, F. 2004. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New England Journal of Medicine 350(23): 2335-2342. https://www.nejm.org/doi/full/10.1056/nejmoa032691  

Iliades, C. 2009. Hypertension Types - Hypertension Center - Everyday Health. https://www.everydayhealth.com/hypertension/understanding/types-of-hypertension.aspx

Joyner, M.J., Schrage, W.G. & Eisenach, J.H. 2007. Control of blood pressure: Normal and abnormal. In Neurobiology of Disease, edited by Gilman, S. Massachusetts: Academic Press. pp. 997-1005. https://www.sciencedirect.com/topics/veterinary-science-and-veterinary-medicine/total-peripheral-resistance

Jujo, K., Ii, M. & Losordo, D.W. 2008. Endothelial progenitor cells in neovascularization of infarcted myocardium. Journal of Molecular and Cellular Cardiology 45(4): 530-544. https://pubmed.ncbi.nlm.nih.gov/18755197‌

Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W.M., Silver, M., Kearney, M., Li, T., Isner, J.M. & Asahara, T. 2000. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences 97(7): 3422-3427. https://pubmed.ncbi.nlm.nih.gov/10725398

Kawamoto, A., Gwon, H.C., Iwaguro, H., Yamaguchi, J.I., Uchida, S., Masuda, H., Silver, M., Ma, H., Kearney, M., Isner, J.M. & Asahara, T.  2001. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103(5): 634-637. https://pubmed.ncbi.nlm.nih.gov/11156872‌

Kong, D.H., Kim, M., Jang, J., Na, H.J. &  Lee, S. 2017. A review of anti-angiogenic targets for monoclonal antibody cancer therapy. International Journal of  Molecular Sciences 18(8): 1786. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578174                

Kim, S.K. & Pangestuti, R. 2011. Biological activities and potential health benefits of fucoxanthin derived from marine brown algae. Advances in Food and Nutrition Research 64: 111-128. https://doi.org/10.1016/b978-0-12-387669-0.00009-0

Krock, B.L., Skuli, N. & Simon, M.C. 2011. Hypoxia-induced angiogenesis: Good and evil. Genes & Cancer 2(12): 1117-1133. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411127

Lachmann, N. & Nikol, S. 2007. Therapeutic angiogenesis for peripheral artery disease: Stem cell therapy. Vasa 36(4): 241-251. https://pubmed.ncbi.nlm.nih.gov/18357916  

Lange, C., Storkebaum, E., de Almodóvar, C.R., Dewerchin, M. & Carmeliet, P. 2016. Vascular endothelial growth factor: A neurovascular target in neurological diseases. Nature Reviews Neurology 12(8): 439-454.

Levy, B.I., Ambrosio, G., Pries, A.R. & Struijker-Boudier, H.A.J. 2001. Microcirculation in hypertension. Circulation 104(6): 735-740. https://www.ahajournals.org/doi/10.1161/hc3101.091158

Marçola, M. & Rodrigues, C.E. 2015. Endothelial progenitor cells in tumor angiogenesis: Another brick in the wall. Stem Cells International2015: 832649. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427119

Marek-Trzonkowska, N., Kwieczyńska, A., Reiwer-Gostomska, M., Koliński, T., Molisz, A. & Siebert, J. 2015. Arterial hypertension is characterized by imbalance of pro-angiogenic versus anti-angiogenic factors. PLoS ONE 10(5). 2015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423857

Medlineplus.  High Blood Pressure. 2020. https://medlineplus.gov/highbloodpressure.html

Montani, D., Bergot, E., Günther, S., Savale, L., Bergeron, A., Bourdin, A., Bouvaist, H., Canuet, M., Pison, C., Macro, M., Poubeau, P., Girerd, B., Natali, D., Guignabert, C., Perros, F., O'Callaghan, D.S., Jaïs, X., Tubert-Bitter, P., Zalcman, G., Sitbon, O., Simonneau, G. & Humbert, M. 2012. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation 125(17): 2128-2137. https://www.ahajournals.org/doi/10.1161/circulationaha.111.079921

Mourad, J.J., des Guetz, G., Debbabi, H. & Levy, B.I. 2008. Blood pressure rise following angiogenesis inhibition by bevacizumab. A crucial role for microcirculation. Annals of Oncology 19(5): 927-934. https://pubmed.ncbi.nlm.nih.gov/18056916

Niu, G. & Chen, X. 2010. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Current Drug Targets 11(8). 1000-1017. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617502

Olufsen, M.S., Hill, N.A., Vaughan, G.D.A., Sainsbury, C. & Johnson, M. 2012. Rarefaction and blood pressure in systemic and pulmonary arteries. Journal of Fluid Mechanics 705: 280-305. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433075

Ott, I., Keller, U., Knoedler, M., Götze, K.S., Doss, K., Fischer, P., Urlbauer, K., Debus, G., von Bubnoff, N., Rudelius, M., Schömig, A., Peschel, C. & Oostendorp, R.A. 2005. Endothelial‐like cells expanded from CD34+ blood cells improve left ventricular function after experimental myocardial infarction. The FASEB Journal 19(8): 992-994. https://pubmed.ncbi.nlm.nih.gov/15814609‌

Pries, A.R. 2015. Vascular adaptation in hypertension. In PanVascular Medicine, edited by Lanzer, P. Heidelberg: Springer. pp. 1619-1624. https://link.springer.com/referenceworkentry/10.1007/978-3-642-37078-6_48

Ptinopoulou, A.G. & Sprangers, B. 2020. Tyrosine kinase inhibitor-induced hypertension marker of anti-tumour treatment efficacy or cardiovascular risk factor? Clinical Kidney Journal 14(1): 14-17.

Rajagopalan, S., Olin, J., Deitcher, S., Pieczek, A., Laird, J., Grossman, P.M., Goldman, C.K., McEllin, K., Kelly, R. & Chronos, N. 2007. Use of a constitutively active hypoxia-inducible factor-1α transgene as a therapeutic strategy in no-option critical limb ischemia patients: Phase 1 dose-escalation experience. Circulation 115(10): 1234-1243. https://www.ahajournals.org/doi/10.1161/circulationaha.106.607994

Ribatti, D. 2013. Angiogenesis. In Brenner's Encyclopedia of Genetics. (Second edition), edited by Maloy, S. & Hughes, K. Massachusetts: Academic Press. pp. 130-132.

Ribatti, D. & Crivellato, E. 2009. Immune cells and angiogenesis. Journal of Cellular and Molecular Medicine 13(9a): 2822-2833. https://doi.org/10.1111/j.1582-4934.2009.00810.x

Robinson, E.S., Khankin, E.V., Karumanchi, S.A. & Humphreys, B.D. 2010. Hypertension induced by vascular endothelial growth factor signaling pathway inhibition: Mechanisms and potential use as a biomarker. Seminars in Nephrology 30(6): 591-601. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058726

Rosca, E.V., Koskimaki, J.E., Rivera, C.G., Pandey, N.B., Tamiz, A.P. & Popel, A.S. 2011. Anti-angiogenic peptides for cancer therapeutics. Current Pharmaceutical Biotechnology 12(8): 1101-1116. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114256

Shibuya, M. 2011. Vascular Endothelial Growth Factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes & Cancer 2(12): 1097-1105. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411125

Sun, H.J., Wu, Z.Y. Nie, X.W. & Bian, J.S. 2020. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Frontiers in Pharmacology 10: 1568. https://www.frontiersin.org/articles/10.3389/fphar.2019.01568/full

Steeghs, N., Gelderblom, H., Roodt, J.O., Christensen, O., Rajagopalan, P. & Hovens, M. 2008. Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clinical Cancer Research 14(11): 3470-3476. https://clincancerres.aacrjournals.org/content/14/11/3470‌

Takeshita, S. 2001. Angiotensin-converting enzyme inhibition improves defective angiogenesis in the ischemic limb of spontaneously hypertensive rats. Cardiovascular Research 52(2): 314-2001. https://academic.oup.com/cardiovascres/article/52/2/314/260730

Tarsia, J. & Caplan, L.R. 2017. Basilar Artery Disease. Elsevier EBooks. https://doi.org/10.1016/b978-0-12-803058-5.00084-9

Versmissen, J., Mirabito Colafella, K.M., Koolen, S.L.W. & Danser, A.H.J. 2019. Vascular cardio-oncology: Vascular endothelial growth factor inhibitors and hypertension. Cardiovascular Research 115(5): 904-914.

Vilar, J., Waeckel, L., Bonnin, P., Cochain, C., Loinard, C., Duriez, M., Silvestre, J.S. & Lévy, B.I. 2008. Chronic hypoxia–induced angiogenesis normalizes blood pressure in spontaneously hypertensive rats. Circulation Research 103(7): 761-769. https://www.ahajournals.org/doi/10.1161/circresaha.108.182758‌

Wang, X. & Snieder, H. 2017. Assessing genetic risk of hypertension at an early age: Future research directions. Expert Review of Cardiovascular Therapy 15(11): 809-812. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5891828

Wasserstrum, Y., Kornowski, R., Raanani, P., Leader, A., Pasvolsky, O. & Iakobishvili, Z. 2015. Hypertension in cancer patients treated with anti-angiogenic based regimens. Cardio-Oncology 1: 6. https://cardiooncologyjournal.biomedcentral.com/articles/10.1186/s40959-015-0009-4

Zhu, X., Wu, S., Dahut, W.L. & Parikh, C.R. 2007. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: Systematic review and meta-analysis. American Journal of Kidney Diseases 49(2): 186-193. https://www.ajkd.org/article/S0272-6386(06)01833-6/pdf

Zisch, A.H., Lutolf, M.P. & Hubbell, J.A. 2003. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovascular Pathology 12(6): 295-310. https://pubmed.ncbi.nlm.nih.gov/14630296

 

*Pengarang untuk surat-menyurat; email: nurnajmi@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya